We consider the Fourier integral operators associated to singular canonical relations, with the cusp singularities on both sides. We prove that such operators lose 1/4+ of a derivative in smoothing properties, compared to nonsingular Fourier integral operators. We also state the results on regularity properties in Lp spaces. Our approach is based on almost orthogonality decompositions of singular oscillatory integral operators.

Integral operators with two-sided cusp singularities

CUCCAGNA, SCIPIO
2000-01-01

Abstract

We consider the Fourier integral operators associated to singular canonical relations, with the cusp singularities on both sides. We prove that such operators lose 1/4+ of a derivative in smoothing properties, compared to nonsingular Fourier integral operators. We also state the results on regularity properties in Lp spaces. Our approach is based on almost orthogonality decompositions of singular oscillatory integral operators.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2308367
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact