According to thermodynamics, the specific heat of Boltzmannian short-range interacting systems is a positive quantity. Less intuitive properties are instead displayed by systems characterized by long-range interactions. In that case, the sign of specific heat depends on the considered statistical ensemble: Negative specific heat can be found in isolated systems, which are studied in the framework of the microcanonical ensemble; on the other hand, it is generally recognized that a positive specific heat should always be measured in systems in contact with a thermal bath, for which the canonical ensemble is the appropriate one. We demonstrate that the latter assumption is not generally true: One can, in principle, measure negative specific heat also in the canonical ensemble if the system under scrutiny is non-Boltzmannian and/or out-of-equilibrium.
Negative Specific Heat in the Canonical Statistical Ensemble
STANISCIA, FABIO;
2010-01-01
Abstract
According to thermodynamics, the specific heat of Boltzmannian short-range interacting systems is a positive quantity. Less intuitive properties are instead displayed by systems characterized by long-range interactions. In that case, the sign of specific heat depends on the considered statistical ensemble: Negative specific heat can be found in isolated systems, which are studied in the framework of the microcanonical ensemble; on the other hand, it is generally recognized that a positive specific heat should always be measured in systems in contact with a thermal bath, for which the canonical ensemble is the appropriate one. We demonstrate that the latter assumption is not generally true: One can, in principle, measure negative specific heat also in the canonical ensemble if the system under scrutiny is non-Boltzmannian and/or out-of-equilibrium.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.