We show that for each $\lambda > 0$, the problem $-\Delta_p u = \lambda f(u)$ in $Omega$, $u = 0$ on $\partial \Omega$ has a sequence of positive solutions $(u_n)_n$ with $\max_{\bar\Omega} u_n$ decreasing to zero. We assume that $\displaystyle{\liminf_{s\to0^+}\frac{F(s)}{s^p} = 0}$ and that $\displaystyle{\limsup_{s\to 0^+}\frac{F(s)}{s^p} = +\infty}$, where $F'=f$. We stress that no condition on the sign of $f$ is imposed.
Titolo: | An elliptic problem with arbitrarily small positive solutions |
Autori: | |
Data di pubblicazione: | 2000 |
Rivista: | |
Abstract: | We show that for each $\lambda > 0$, the problem $-\Delta_p u = \lambda f(u)$ in $Omega$, $u = 0$ on $\partial \Omega$ has a sequence of positive solutions $(u_n)_n$ with $\max_{\bar\Omega} u_n$ decreasing to zero. We assume that $\displaystyle{\liminf_{s\to0^+}\frac{F(s)}{s^p} = 0}$ and that $\displaystyle{\limsup_{s\to 0^+}\frac{F(s)}{s^p} = +\infty}$, where $F'=f$. We stress that no condition on the sign of $f$ is imposed. |
Handle: | http://hdl.handle.net/11368/2311256 |
URL: | http://www.emis.de/journals/EJDE/ |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.