Inelastic light scattering spectra of several members of the RFe3BO34 family reveal a cascade of phase transitions as a function of temperature, starting with a structural, weakly first-order, phase transition followed by two magnetic phase transitions. Those consist of the ordering of the Fe-spin sublattice, revealed by all the compounds, and a subsequent spin-reorientational transition for GdFe3BO34. The Raman data evidence a strong coupling between the lattice and magnetic degrees of freedom in these borates. The Fe-sublattice ordering leads to a strong suppression of the low-energy magnetic scattering, and a multiple peaked twomagnon scattering continuum is observed. Evidence for short-range correlations is found in the “paramagnetic” phase by the observation of a broad magnetic continuum in the Raman data, which persists up to surprisingly high temperatures.
Raman scattering from phonons and magnons in RFe3(BO3)(4)
FAUSTI, DANIELE;
2006-01-01
Abstract
Inelastic light scattering spectra of several members of the RFe3BO34 family reveal a cascade of phase transitions as a function of temperature, starting with a structural, weakly first-order, phase transition followed by two magnetic phase transitions. Those consist of the ordering of the Fe-spin sublattice, revealed by all the compounds, and a subsequent spin-reorientational transition for GdFe3BO34. The Raman data evidence a strong coupling between the lattice and magnetic degrees of freedom in these borates. The Fe-sublattice ordering leads to a strong suppression of the low-energy magnetic scattering, and a multiple peaked twomagnon scattering continuum is observed. Evidence for short-range correlations is found in the “paramagnetic” phase by the observation of a broad magnetic continuum in the Raman data, which persists up to surprisingly high temperatures.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.