This work reports on the surface characterisation of 2,2-bis[4-(2-hydroxy- 3-methacryloxyl-oxypropoxy)phenyl]propane/triethylene glycol dimethacrylate bio-compatible resins after high energy He+ ion implantation treatments. The samples have been characterised by diffuse reflectance FT-IR, X-ray photo-electron spectroscopy, ultramicro-hardness and nano-scratch wear tests. In addition, osteblast cell assays MG-63 have been used to test the bio-compatibility of the resin surfaces after the ion implantation treatments. It has been observed that the maximum surface hardening of the resin surfaces is achieved at He-ion implantation energies of around 50 keV and fluences of 1 × 1016 cm-2. At 50 keV of He-ion bombardment, the wear rate of the resin surface decreases by a factor 2 with respect to the pristine resin. Finally, in vitro tests indicate that the He-ion implantation does not affect to the cell-proliferation behaviour of the UV-cured resins. The enhancement of the surface mechanical properties of these materials can have beneficial consequences, for instance in preventing wear and surface fatigue of bone-fixation prostheses, whose surfaces are continuously held to sliding and shearing contacts of sub-millimetre scale lengths. © 2010 Elsevier B.V. All rights reserved.

Effects of He+ ion implantation on surface properties of UV-cured Bis-GMA/TEGDMA bio-compatible resins

DONATI, IVAN
2011-01-01

Abstract

This work reports on the surface characterisation of 2,2-bis[4-(2-hydroxy- 3-methacryloxyl-oxypropoxy)phenyl]propane/triethylene glycol dimethacrylate bio-compatible resins after high energy He+ ion implantation treatments. The samples have been characterised by diffuse reflectance FT-IR, X-ray photo-electron spectroscopy, ultramicro-hardness and nano-scratch wear tests. In addition, osteblast cell assays MG-63 have been used to test the bio-compatibility of the resin surfaces after the ion implantation treatments. It has been observed that the maximum surface hardening of the resin surfaces is achieved at He-ion implantation energies of around 50 keV and fluences of 1 × 1016 cm-2. At 50 keV of He-ion bombardment, the wear rate of the resin surface decreases by a factor 2 with respect to the pristine resin. Finally, in vitro tests indicate that the He-ion implantation does not affect to the cell-proliferation behaviour of the UV-cured resins. The enhancement of the surface mechanical properties of these materials can have beneficial consequences, for instance in preventing wear and surface fatigue of bone-fixation prostheses, whose surfaces are continuously held to sliding and shearing contacts of sub-millimetre scale lengths. © 2010 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2379193
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact