Phase-space Lagrangian dynamics in ideal fluids (i.e, continua) is usually related to the so-called {\it ideal tracer particles}. The latter, which can in principle be permitted to have arbitrary initial velocities, are understood as particles of infinitesimal size which do not produce significant perturbations of the fluid and do not interact among themselves. An unsolved theoretical problem is the correct definition of their dynamics in ideal fluids. The issue is relevant in order to exhibit the connection between fluid dynamics and the classical dynamical system, underlying a prescribed fluid system, which uniquely generates its time-evolution. \ The goal of this paper is to show that the tracer-particle dynamics can be {\it exactly} established for an arbitrary incompressible fluid uniquely based on the construction of an inverse kinetic theory (IKT) (Tessarotto \textit{et al.}, 2000-2008). As an example, the case of an incompressible Newtonian thermofluid is here considered.

Phase-space Lagrangian dynamics of incompressible thermofluids.

TESSAROTTO, MASSIMO
2009-01-01

Abstract

Phase-space Lagrangian dynamics in ideal fluids (i.e, continua) is usually related to the so-called {\it ideal tracer particles}. The latter, which can in principle be permitted to have arbitrary initial velocities, are understood as particles of infinitesimal size which do not produce significant perturbations of the fluid and do not interact among themselves. An unsolved theoretical problem is the correct definition of their dynamics in ideal fluids. The issue is relevant in order to exhibit the connection between fluid dynamics and the classical dynamical system, underlying a prescribed fluid system, which uniquely generates its time-evolution. \ The goal of this paper is to show that the tracer-particle dynamics can be {\it exactly} established for an arbitrary incompressible fluid uniquely based on the construction of an inverse kinetic theory (IKT) (Tessarotto \textit{et al.}, 2000-2008). As an example, the case of an incompressible Newtonian thermofluid is here considered.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2385005
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact