We produce a detailed proof of a result of C.V. Coffman and W.K. Ziemer on the existence of positive solutions of the Dirichlet problem for the prescribed mean curvature equation -div({\nabla u}/{ \sqrt{1+{|\nabla u|}^2}}) = \lambda f(x,u) in \Omega,u=0 on \partial \Omega, assuming that f has a superlinear behaviour at u=0.
On a result of C.V. Coffman and W.K. Ziemer about the prescribed mean curvature equation
OBERSNEL, Franco;OMARI, PIERPAOLO
2011-01-01
Abstract
We produce a detailed proof of a result of C.V. Coffman and W.K. Ziemer on the existence of positive solutions of the Dirichlet problem for the prescribed mean curvature equation -div({\nabla u}/{ \sqrt{1+{|\nabla u|}^2}}) = \lambda f(x,u) in \Omega,u=0 on \partial \Omega, assuming that f has a superlinear behaviour at u=0.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.