A small library of sugar-modified guanosine derivatives has been prepared, starting from a common intermediate, fully protected on the nucleobase. Insertion of myristoyl chains and of diverse hydrophilic groups, such as an oligoethylene glycol, an amino acid or a disaccharide chain, connected through in vivo reversible ester linkages, or of a charged functional group provided different examples of amphiphilic guanosine analogues, named G1–G7 herein. All of the sugar-modified derivatives were positive in the potassium picrate test, showing an ability to form G-tetrads. CD spectra demonstrated that, as dilute solutions in CHCl3, distinctive G-quadruplex systems may be formed, with spatial organisations dependent upon the structural modifications. Two compounds, G1 and G2, proved to be good low-molecular-weight organogelators in polar organic solvents, such as methanol, ethanol and acetonitrile. Ion transportation experiments through phospholipid bilayers were carried out to evaluate their ability to mediate H+ transportation, with G5 showing the highest activity within the investigated series. Moreover, G3 and G5 exhibited a significant cytotoxic profile against human MCF-7 cancer cells in in vitro bioassays.
Design, Synthesis and Characterization of novel Guanosine-based Amphiphiles
MILANO, DOMENICO;BOCCALON, MARIANGELA;TECILLA, PAOLO;
2011-01-01
Abstract
A small library of sugar-modified guanosine derivatives has been prepared, starting from a common intermediate, fully protected on the nucleobase. Insertion of myristoyl chains and of diverse hydrophilic groups, such as an oligoethylene glycol, an amino acid or a disaccharide chain, connected through in vivo reversible ester linkages, or of a charged functional group provided different examples of amphiphilic guanosine analogues, named G1–G7 herein. All of the sugar-modified derivatives were positive in the potassium picrate test, showing an ability to form G-tetrads. CD spectra demonstrated that, as dilute solutions in CHCl3, distinctive G-quadruplex systems may be formed, with spatial organisations dependent upon the structural modifications. Two compounds, G1 and G2, proved to be good low-molecular-weight organogelators in polar organic solvents, such as methanol, ethanol and acetonitrile. Ion transportation experiments through phospholipid bilayers were carried out to evaluate their ability to mediate H+ transportation, with G5 showing the highest activity within the investigated series. Moreover, G3 and G5 exhibited a significant cytotoxic profile against human MCF-7 cancer cells in in vitro bioassays.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.