A binomial ideal is an ideal of the polynomial ring which is gener- ated by binomials. In a previous paper, we gave a correspondence between pure saturated binomial ideals of K [x1 , . . . , xn ] and sub- modules of Zn and we showed that it is possible to construct a the- ory of Gröbner bases for submodules of Zn . As a consequence, it is possible to follow alternative strategies for the computation of Gröbner bases of submodules of Zn (and hence of binomial ideals) which avoid the use of Buchberger algorithm. In the present pa- per, we show that a Gröbner basis of a Z-module M ⊆ Zn of rank m lies into a finite set of cones of Zm which cover a half-space of Zm . More precisely, in each of these cones C , we can find a suitable subset Y (C ) which has the structure of a finite abelian group and such that a Gröbner basis of the module M (and hence of the pure saturated binomial ideal represented by M) is described using the elements of the groups Y (C ) together with the generators of the cones.

Computing Gröbner bases of pure binomial ideals via submodules of Zn

LOGAR, ALESSANDRO
2012-01-01

Abstract

A binomial ideal is an ideal of the polynomial ring which is gener- ated by binomials. In a previous paper, we gave a correspondence between pure saturated binomial ideals of K [x1 , . . . , xn ] and sub- modules of Zn and we showed that it is possible to construct a the- ory of Gröbner bases for submodules of Zn . As a consequence, it is possible to follow alternative strategies for the computation of Gröbner bases of submodules of Zn (and hence of binomial ideals) which avoid the use of Buchberger algorithm. In the present pa- per, we show that a Gröbner basis of a Z-module M ⊆ Zn of rank m lies into a finite set of cones of Zm which cover a half-space of Zm . More precisely, in each of these cones C , we can find a suitable subset Y (C ) which has the structure of a finite abelian group and such that a Gröbner basis of the module M (and hence of the pure saturated binomial ideal represented by M) is described using the elements of the groups Y (C ) together with the generators of the cones.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2468730
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact