In order to characterize the pressure-induced decomposition of ringwoodite (c-Mg2SiO4), the topological analysis of the electron density q(r), based upon the theory of atoms in molecules (AIM) developed by Bader in the framework of the catastrophe theory, has been performed. Calculations have been carried out by means of the ab initio CRYSTAL09 code at the HF/DFT level, using Hamiltonians based on the Becke- LYP scheme containing hybrid Hartree– Fock/density functional exchange–correlation terms. The equation of state at 0 K has been constructed for the three phases involved in the post-spinel phase transition (ringwoodite -> Mg-perovskite + periclase) occurring at the transition zone–lower mantel boundary. The topological results show that the decomposition of the ringwoodite at high pressures is caused by a conflict catastrophe. Furthermore, topological evidences of the central role played by the oxygen atoms to facilitate the pressure-induced ringwoodite decomposition and the subsequent phase transition have been noticed.

The pressure-induced ringwoodite to Mg-perovskite and periclase post-spinel phase transition: a Bader’s topological analysis of the ab initio electron densities

PARISI, FILIPPO;PRINCIVALLE, FRANCESCO;
2012-01-01

Abstract

In order to characterize the pressure-induced decomposition of ringwoodite (c-Mg2SiO4), the topological analysis of the electron density q(r), based upon the theory of atoms in molecules (AIM) developed by Bader in the framework of the catastrophe theory, has been performed. Calculations have been carried out by means of the ab initio CRYSTAL09 code at the HF/DFT level, using Hamiltonians based on the Becke- LYP scheme containing hybrid Hartree– Fock/density functional exchange–correlation terms. The equation of state at 0 K has been constructed for the three phases involved in the post-spinel phase transition (ringwoodite -> Mg-perovskite + periclase) occurring at the transition zone–lower mantel boundary. The topological results show that the decomposition of the ringwoodite at high pressures is caused by a conflict catastrophe. Furthermore, topological evidences of the central role played by the oxygen atoms to facilitate the pressure-induced ringwoodite decomposition and the subsequent phase transition have been noticed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2489931
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact