As is well-known, the Bernays-Schönfinkel-Ramsey class of all prenex ∃*∀*-sentences which are valid in classical first-order logic is decidable. This paper paves the way to an analogous result which the authors deem to hold when the only available predicate symbols are ∈ and =, no constants or function symbols are present, and one moves inside a (rather generic) Set Theory whose axioms yield the well-foundedness of membership and the existence of infinite sets. Here semi-decidability of the satisfiability problem for the BSR class is proved by following a purely semantic approach, the remaining part of the decidability result being postponed to a forthcoming paper.

The Bernays-Schönfinkel-Ramsey class for set theory: semidecidability.

OMODEO, EUGENIO;
2010-01-01

Abstract

As is well-known, the Bernays-Schönfinkel-Ramsey class of all prenex ∃*∀*-sentences which are valid in classical first-order logic is decidable. This paper paves the way to an analogous result which the authors deem to hold when the only available predicate symbols are ∈ and =, no constants or function symbols are present, and one moves inside a (rather generic) Set Theory whose axioms yield the well-foundedness of membership and the existence of infinite sets. Here semi-decidability of the satisfiability problem for the BSR class is proved by following a purely semantic approach, the remaining part of the decidability result being postponed to a forthcoming paper.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2491358
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 7
social impact