The transport activity of a membrane protein, bilitranslocase (T.C. # 2.A.65.1.1), which acts as a transporter of bilirubin from blood to liver cells, was experimentally determined for a large set of various endogenous compounds, drugs, purine and pyrimidine derivatives. On these grounds, the structure-activity models were developed following the OECD principles of QSAR models and their predictive ability for new chemicals was evaluated. The applicability domain of the models was estimated by Euclidean distances criteria according to the applied modeling method. The selection of the most influential structural variables was an important stage in the adopted modeling methodology. The interpretation of selected variables was performed in order to get an insight into the mechanism of transport through the cell membrane via bilitranslocase. Validation of the optimized models was performed by a previously determined validation set. The classification model was build to separate active from inactive compounds. The resulting accuracy, sensitivity, and specificity were 0.73, 0.89, and 0.64, respectively. Only active compounds were used to develop a predictive model for bilitranslocase inhibition constants. The model showed good predictive ability; Root Mean Squared error of the validation set, RMS(V)=0.29 log units.

Experimental determination and prediction of bilitranslocase transport activity.

FORNASARO, STEFANO;PASSAMONTI, SABINA
2011-01-01

Abstract

The transport activity of a membrane protein, bilitranslocase (T.C. # 2.A.65.1.1), which acts as a transporter of bilirubin from blood to liver cells, was experimentally determined for a large set of various endogenous compounds, drugs, purine and pyrimidine derivatives. On these grounds, the structure-activity models were developed following the OECD principles of QSAR models and their predictive ability for new chemicals was evaluated. The applicability domain of the models was estimated by Euclidean distances criteria according to the applied modeling method. The selection of the most influential structural variables was an important stage in the adopted modeling methodology. The interpretation of selected variables was performed in order to get an insight into the mechanism of transport through the cell membrane via bilitranslocase. Validation of the optimized models was performed by a previously determined validation set. The classification model was build to separate active from inactive compounds. The resulting accuracy, sensitivity, and specificity were 0.73, 0.89, and 0.64, respectively. Only active compounds were used to develop a predictive model for bilitranslocase inhibition constants. The model showed good predictive ability; Root Mean Squared error of the validation set, RMS(V)=0.29 log units.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2492358
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 19
social impact