Oral administration of yessotoxin (YTX) has been reported to induce ultrastructural alterations in rodent cardiac muscle. To study its effects on various fundamental aspects of cardiac muscle cells activity, that is, cell beating, Ca(2+) and cyclic adenosine 3',5'-monophosphate (cAMP) levels, as well as cell vitality, a primary culture of rat cardiomyocytes was used. Patch-clamp recordings, Ca(2+) imaging, and cAMP assays were performed on cultured cardiomyocytes to characterize YTX effects on the cell beating frequency. 3-(4,5-Dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) and sulforhodamine B (SRB) tests were carried out to determine its effect on cardiomyocytes viability. Videoimaging techniques showed a time- and concentration-dependent reduction in the beating frequency after 1, 5, and 24 h incubation with YTX (0.1-1 microM). This effect was neither associated to the uncoupling between the membrane electrical activity and Ca(2+) release from intracellular stores
In vitro effects of yessotoxin on a primary culture of rat cardiomyocytes
DELL'OVO, VALERIA;BANDI, ELENA;FLORIO, CHIARA;SCIANCALEPORE, MARINA;DECORTI, GIULIANA;SOSA, SILVIO;LORENZON, Paola;TUBARO, AURELIA
2008-01-01
Abstract
Oral administration of yessotoxin (YTX) has been reported to induce ultrastructural alterations in rodent cardiac muscle. To study its effects on various fundamental aspects of cardiac muscle cells activity, that is, cell beating, Ca(2+) and cyclic adenosine 3',5'-monophosphate (cAMP) levels, as well as cell vitality, a primary culture of rat cardiomyocytes was used. Patch-clamp recordings, Ca(2+) imaging, and cAMP assays were performed on cultured cardiomyocytes to characterize YTX effects on the cell beating frequency. 3-(4,5-Dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) and sulforhodamine B (SRB) tests were carried out to determine its effect on cardiomyocytes viability. Videoimaging techniques showed a time- and concentration-dependent reduction in the beating frequency after 1, 5, and 24 h incubation with YTX (0.1-1 microM). This effect was neither associated to the uncoupling between the membrane electrical activity and Ca(2+) release from intracellular storesPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.