Using the gauge-invariant but path-dependent variable formalism, we compute the static quantum potential for non-commutative axionic electrodynamics (or axionic electrodynamics in the presence of a minimal length). Accordingly, we obtain an ultraviolet finite static potential that is the sum of a Yukawa-type potential and a linear potential, leading to the confinement of static charges. Interestingly, it should be noted that this calculation involves no θ expansion at all. The present result manifests the key role played by the new quantum of length in our analysis.

Finite axionic electrodynamics from a new non-commutative approach

SPALLUCCI, EURO
2012-01-01

Abstract

Using the gauge-invariant but path-dependent variable formalism, we compute the static quantum potential for non-commutative axionic electrodynamics (or axionic electrodynamics in the presence of a minimal length). Accordingly, we obtain an ultraviolet finite static potential that is the sum of a Yukawa-type potential and a linear potential, leading to the confinement of static charges. Interestingly, it should be noted that this calculation involves no θ expansion at all. The present result manifests the key role played by the new quantum of length in our analysis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2500937
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact