This review deals with short peptides (up to 50 amino acids) as biomimetic active recognition elements in sensing systems. Peptide-based sensors have been developed in recent years according to different strategies. Synthetic peptides have been designed on the basis of known interactions between single or a few amino acids and targets, with attention being paid to the presence of peptide motifs known to allow intermolecular self-organization of the sensing peptides over the sensor surface. Sensitive and sophisticated sensors have been obtained in this way, but the use of designed peptides is limited by severe difficulties in their in silico design. Short peptides from random phage display have been selected in a random way from large, unfocussed, and often preexisting and commercially available phage display libraries, with no design elements. Artificial, miniaturized receptors have been obtained from the reduction of the known sequence of a natural receptor down to a synthesizable and yet stable one. Alternatively, binding sites have been created over a designed, stable peptide scaffold. Short peptides have also been used as active elements for the detection of their own natural receptors.

Short peptides as biosensor transducers

PAVAN, SILVIA;BERTI, FEDERICO
2012-01-01

Abstract

This review deals with short peptides (up to 50 amino acids) as biomimetic active recognition elements in sensing systems. Peptide-based sensors have been developed in recent years according to different strategies. Synthetic peptides have been designed on the basis of known interactions between single or a few amino acids and targets, with attention being paid to the presence of peptide motifs known to allow intermolecular self-organization of the sensing peptides over the sensor surface. Sensitive and sophisticated sensors have been obtained in this way, but the use of designed peptides is limited by severe difficulties in their in silico design. Short peptides from random phage display have been selected in a random way from large, unfocussed, and often preexisting and commercially available phage display libraries, with no design elements. Artificial, miniaturized receptors have been obtained from the reduction of the known sequence of a natural receptor down to a synthesizable and yet stable one. Alternatively, binding sites have been created over a designed, stable peptide scaffold. Short peptides have also been used as active elements for the detection of their own natural receptors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2507337
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 134
  • ???jsp.display-item.citation.isi??? 122
social impact