It has been clearly established that osteoclasts, which play a crucial role in bone resorption, differentiate from hematopoietic cells belonging to the monocyte/macrophage lineage in the presence of macrophage-colony stimulating factor (MCSF) and receptor activator of NF-B ligand (RANKL). We have here investigated the M-CSF- and RANKL-induced osteoclastic differentiation of two distinct clones of the murine monocytic/macrophagic RAW 264.7 cell line, known as TIB-71 and CRL-2278, the latter cell clone being defective for the expression of the inducible nitric oxide synthase isoform in response to interferon-gamma or lipopolysaccharide. CRL-2278 cells demonstrated a more rapid osteoclastic differentiation than TIB-71 cells, as documented by morphology, tartrate-resistant acid phosphatase positivity, and bone resorption activity. The enhanced osteoclastic differentiation of CRL-2278 was accompanied by a higher rate of cells in the S/G2-M phases of cell cycle as compared to TIB-71. The analysis of nitric oxide synthase (NOS) isoforms clearly demonstrated that only neuronal NOS was detectable at high levels in CRL-2278 but not in TIB cells under all tested conditions. Moreover, the broad inhibitor of NOS activity L-NAME significantly inhibited osteoclastic differentiation of CRL-2278 cells. Altogether, these results demonstrate that a basal constitutive neuronal NOS activity positively affects the RANKL/M-CSF-related osteoclastic differentiation.

Different levels of the neuronal nitric oxide synthase isoform modulate the rate of osteoclastic differentiation of TIB-71 and CRL-2278 RAW 264.7 murine cell clones.

NICOLIN, VANESSA;PONTI, CRISTINA;GRILL, VITTORIO;BORTUL, Roberta;ZWEYER, MARINA;
2005-01-01

Abstract

It has been clearly established that osteoclasts, which play a crucial role in bone resorption, differentiate from hematopoietic cells belonging to the monocyte/macrophage lineage in the presence of macrophage-colony stimulating factor (MCSF) and receptor activator of NF-B ligand (RANKL). We have here investigated the M-CSF- and RANKL-induced osteoclastic differentiation of two distinct clones of the murine monocytic/macrophagic RAW 264.7 cell line, known as TIB-71 and CRL-2278, the latter cell clone being defective for the expression of the inducible nitric oxide synthase isoform in response to interferon-gamma or lipopolysaccharide. CRL-2278 cells demonstrated a more rapid osteoclastic differentiation than TIB-71 cells, as documented by morphology, tartrate-resistant acid phosphatase positivity, and bone resorption activity. The enhanced osteoclastic differentiation of CRL-2278 was accompanied by a higher rate of cells in the S/G2-M phases of cell cycle as compared to TIB-71. The analysis of nitric oxide synthase (NOS) isoforms clearly demonstrated that only neuronal NOS was detectable at high levels in CRL-2278 but not in TIB cells under all tested conditions. Moreover, the broad inhibitor of NOS activity L-NAME significantly inhibited osteoclastic differentiation of CRL-2278 cells. Altogether, these results demonstrate that a basal constitutive neuronal NOS activity positively affects the RANKL/M-CSF-related osteoclastic differentiation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2509338
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact