The aim of the present study was to test alginate gels of different compositions as a system for controlled release of manganese ions (Mn(2+)) for application in manganese-enhanced MRI (MEMRI), in order to circumvent the challenge of achieving optimal MRI resolution without resorting to high, potentially cytotoxic doses of Mn(2+). Elemental analysis and stability studies of Mn-alginate revealed marked differences in ion binding capacity, rendering Mn/Ba-alginate gels with high guluronic acid content most stable. The findings were corroborated by corresponding differences in the release rate of Mn(2+) from alginate beads in vitro using T(1)-weighted MRI. Furthermore, intravitreal (ivit) injection of Mn-alginate beads yielded significant enhancement of the rat retina and retinal ganglion cell (RGC) axons 24 h post-injection. Subsequent compartmental modelling and simulation of ivit Mn(2+) transport and concentration revealed that application of slow release contrast agents can achieve a significant reduction of ivit Mn(2+) concentration compared with bolus injection. This is followed by a concomitant increase in the availability of ivit Mn(2+) for uptake by RGC, corresponding to significantly increased time constants. Our results provide proof-of-concept for the applicability of Mn-alginate gels as a system for controlled release of Mn(2+) for optimized MEMRI application.

Mn-alginate gels as a novel system for controlled release of Mn2+ in manganese-enhanced MRI

DONATI, IVAN;
2012-01-01

Abstract

The aim of the present study was to test alginate gels of different compositions as a system for controlled release of manganese ions (Mn(2+)) for application in manganese-enhanced MRI (MEMRI), in order to circumvent the challenge of achieving optimal MRI resolution without resorting to high, potentially cytotoxic doses of Mn(2+). Elemental analysis and stability studies of Mn-alginate revealed marked differences in ion binding capacity, rendering Mn/Ba-alginate gels with high guluronic acid content most stable. The findings were corroborated by corresponding differences in the release rate of Mn(2+) from alginate beads in vitro using T(1)-weighted MRI. Furthermore, intravitreal (ivit) injection of Mn-alginate beads yielded significant enhancement of the rat retina and retinal ganglion cell (RGC) axons 24 h post-injection. Subsequent compartmental modelling and simulation of ivit Mn(2+) transport and concentration revealed that application of slow release contrast agents can achieve a significant reduction of ivit Mn(2+) concentration compared with bolus injection. This is followed by a concomitant increase in the availability of ivit Mn(2+) for uptake by RGC, corresponding to significantly increased time constants. Our results provide proof-of-concept for the applicability of Mn-alginate gels as a system for controlled release of Mn(2+) for optimized MEMRI application.
2012
14-mar-2012
Pubblicato
File in questo prodotto:
File Dimensione Formato  
Mn-Alginate gels MRI.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 724.5 kB
Formato Adobe PDF
724.5 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2537346
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact