The manuscript reports upon the in vitro bioavailability improvement of Furosemide through particle size reduction as well as formation of solid dispersions (SDs) using the hydrophilic polymer Crospovidone. Supercritical carbon dioxide was used as the processing medium for these experiments. In order to successfully design a CO2 antisolvent process, preliminary studies of Furosemide microparticles generation were conducted using Peng Robinson’s Equation of State. These preliminary studies indicated using acetone as a solvent with pressures of 100 and 200 bar and a temperature of 313 K would yield optimum results. These operative conditions were then adopted for the SDs. Micronization by means of SAS at 200 bar resulted in a significant reduction of crystallites, particle size, as well as improved dissolution rate in comparison with untreated drug. Furosemide recrystallized by SAS at 100 bar and using traditional solvent evaporation. Moreover, changes in polymorphic form were observed in the 200 bar samples. The physicochemical characterization of Furosemide:crospovidone SDs (1:1 and 1:2 w/w, respectively) generated by SAS revealed the presence of the drug amorphously dispersed in the 1:2 w/w sample at 100 bar still remaining stable after 6 months. This sample exhibits the best in vitro dissolution performance in the simulated gastric fluid (pH 1.2), in comparison with the same SD obtained by traditional method. No interactions between drug and polymer were observed. These results, together with the presence of the selected carrier, confirm that the use of Supercritical fluids antisolvent technology is a valid mean to increase the dissolution rate of poorly soluble drugs. Theoretical in vivo–in vitro relation was predicted by means of a pharmacokinetics mathematical model.

Applications of supercritical fluids to enhance the dissolution behaviorsof Furosemide by generation of microparticles and solid dispersions

DE ZORDI, NICOLA;MONEGHINI, MARIAROSA;KIKIC, IRENEO;GRASSI, Mario;SOLINAS, DARIO;
2012-01-01

Abstract

The manuscript reports upon the in vitro bioavailability improvement of Furosemide through particle size reduction as well as formation of solid dispersions (SDs) using the hydrophilic polymer Crospovidone. Supercritical carbon dioxide was used as the processing medium for these experiments. In order to successfully design a CO2 antisolvent process, preliminary studies of Furosemide microparticles generation were conducted using Peng Robinson’s Equation of State. These preliminary studies indicated using acetone as a solvent with pressures of 100 and 200 bar and a temperature of 313 K would yield optimum results. These operative conditions were then adopted for the SDs. Micronization by means of SAS at 200 bar resulted in a significant reduction of crystallites, particle size, as well as improved dissolution rate in comparison with untreated drug. Furosemide recrystallized by SAS at 100 bar and using traditional solvent evaporation. Moreover, changes in polymorphic form were observed in the 200 bar samples. The physicochemical characterization of Furosemide:crospovidone SDs (1:1 and 1:2 w/w, respectively) generated by SAS revealed the presence of the drug amorphously dispersed in the 1:2 w/w sample at 100 bar still remaining stable after 6 months. This sample exhibits the best in vitro dissolution performance in the simulated gastric fluid (pH 1.2), in comparison with the same SD obtained by traditional method. No interactions between drug and polymer were observed. These results, together with the presence of the selected carrier, confirm that the use of Supercritical fluids antisolvent technology is a valid mean to increase the dissolution rate of poorly soluble drugs. Theoretical in vivo–in vitro relation was predicted by means of a pharmacokinetics mathematical model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2541943
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 34
social impact