The Marano and Grado lagoon, one of the largest wetlands in the Mediterranean Sea, has been subject to mercury contamination by industrial and mining activities. This must be considered a severe threat for Manila clam harvesting, which is an important fishing and commercial activity in the area. Contamination levels and potential risk for human consumption both in reared and wild clams collected from the lagoon were assessed by analyzing total mercury (THg) and methylmercury (MeHg) contents. In addition, relationships between THg and MeHg in sediments and in the bivalves were investigated. Increased bioaccumulation of THg but not of MeHg with increasing size of wild clam populations was observed at most sites. Higher concentrations both of THg (605 210 ng g-1 ww) and MeHg (147 37 ng g-1 ww) were detected in the eastern lagoon where the highest THg contents in sediments were observed as a consequence of the long-term supply of cinnabar rich suspended material from the Isonzo River. The variation of Hg content in seeded Manila clams during growth was monitored over a period of 18 months at two sites of the western sector of the lagoon. Results showed that the two areas were suitable for clam farming, with THg levels in reared bivalves always lower than the 0.5 mg kg-1 ww European Community limit. At the same time, as clams grew bigger in size, their THg and MeHg concentrations decreased, becoming lower than in the starting seeded pool. Reared clams presented lower THg (84 55 ng g-1 ww) and MeHg (44.1 24.6 ng g-1 ww) content than wild clams of the same commercial size (>30 mm). Based on a precautionary approach, intake of Hg and MeHg with the estimated clam consumption does not seem to constitute a risk for human health in the studied area.

Bioaccumulation of mercury in reared and wild Ruditapes philippinarum of a Mediterranean lagoon

EMILI, ANDREA;COVELLI, STEFANO
2012

Abstract

The Marano and Grado lagoon, one of the largest wetlands in the Mediterranean Sea, has been subject to mercury contamination by industrial and mining activities. This must be considered a severe threat for Manila clam harvesting, which is an important fishing and commercial activity in the area. Contamination levels and potential risk for human consumption both in reared and wild clams collected from the lagoon were assessed by analyzing total mercury (THg) and methylmercury (MeHg) contents. In addition, relationships between THg and MeHg in sediments and in the bivalves were investigated. Increased bioaccumulation of THg but not of MeHg with increasing size of wild clam populations was observed at most sites. Higher concentrations both of THg (605 210 ng g-1 ww) and MeHg (147 37 ng g-1 ww) were detected in the eastern lagoon where the highest THg contents in sediments were observed as a consequence of the long-term supply of cinnabar rich suspended material from the Isonzo River. The variation of Hg content in seeded Manila clams during growth was monitored over a period of 18 months at two sites of the western sector of the lagoon. Results showed that the two areas were suitable for clam farming, with THg levels in reared bivalves always lower than the 0.5 mg kg-1 ww European Community limit. At the same time, as clams grew bigger in size, their THg and MeHg concentrations decreased, becoming lower than in the starting seeded pool. Reared clams presented lower THg (84 55 ng g-1 ww) and MeHg (44.1 24.6 ng g-1 ww) content than wild clams of the same commercial size (>30 mm). Based on a precautionary approach, intake of Hg and MeHg with the estimated clam consumption does not seem to constitute a risk for human health in the studied area.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2542943
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact