The purpose of this work is to optimize the stator shape of an axial compressor, in order to maximize the global efficiency of the machine, fixing the rotor shape. We have used a 3D parametric mesh and the CFX-Tascflow code for the flow simulation. To find out the most important variables in this problem, we have run a preliminary series of designs, whose results have been analyzed by a statistic tool. This analysis has helped us to choose the most appropriate variables and their ranges in order to implement the optimization algorithm more efficiently and rapidly. For the simulation of the fluid flow through the machine, we have used a cluster of 12 processors.

Application of Evolutionary Algorithms and Statistical Analysis in the Numerical Optimization of an Axial Compressor

MOSETTI, GIOVANNI;PEDIRODA, VALENTINO;POLONI, CARLO
2005-01-01

Abstract

The purpose of this work is to optimize the stator shape of an axial compressor, in order to maximize the global efficiency of the machine, fixing the rotor shape. We have used a 3D parametric mesh and the CFX-Tascflow code for the flow simulation. To find out the most important variables in this problem, we have run a preliminary series of designs, whose results have been analyzed by a statistic tool. This analysis has helped us to choose the most appropriate variables and their ranges in order to implement the optimization algorithm more efficiently and rapidly. For the simulation of the fluid flow through the machine, we have used a cluster of 12 processors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2546010
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact