Novel antiangiogenic strategies with complementary mechanisms are needed to maximize efficacy and minimize resistance to current angiogenesis inhibitors. We explored the therapeutic potential and mechanisms of alphaPlGF, an antibody against placental growth factor (PlGF), a VEGF homolog, which regulates the angiogenic switch in disease, but not in health. alphaPlGF inhibited growth and metastasis of various tumors, including those resistant to VEGF(R) inhibitors (VEGF(R)Is), and enhanced the efficacy of chemotherapy and VEGF(R)Is. alphaPlGF inhibited angiogenesis, lymphangiogenesis, and tumor cell motility. Distinct from VEGF(R)Is, alphaPlGF prevented infiltration of angiogenic macrophages and severe tumor hypoxia, and thus, did not switch on the angiogenic rescue program responsible for resistance to VEGF(R)Is. Moreover, it did not cause or enhance VEGF(R)I-related side effects. The efficacy and safety of alphaPlGF, its pleiotropic and complementary mechanism to VEGF(R)Is, and the negligible induction of an angiogenic rescue program suggest that alphaPlGF may constitute a novel approach for cancer treatment.

Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels.

ZACCHIGNA, SERENA;GIACCA, MAURO;
2007-01-01

Abstract

Novel antiangiogenic strategies with complementary mechanisms are needed to maximize efficacy and minimize resistance to current angiogenesis inhibitors. We explored the therapeutic potential and mechanisms of alphaPlGF, an antibody against placental growth factor (PlGF), a VEGF homolog, which regulates the angiogenic switch in disease, but not in health. alphaPlGF inhibited growth and metastasis of various tumors, including those resistant to VEGF(R) inhibitors (VEGF(R)Is), and enhanced the efficacy of chemotherapy and VEGF(R)Is. alphaPlGF inhibited angiogenesis, lymphangiogenesis, and tumor cell motility. Distinct from VEGF(R)Is, alphaPlGF prevented infiltration of angiogenic macrophages and severe tumor hypoxia, and thus, did not switch on the angiogenic rescue program responsible for resistance to VEGF(R)Is. Moreover, it did not cause or enhance VEGF(R)I-related side effects. The efficacy and safety of alphaPlGF, its pleiotropic and complementary mechanism to VEGF(R)Is, and the negligible induction of an angiogenic rescue program suggest that alphaPlGF may constitute a novel approach for cancer treatment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2552552
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? 265
  • Scopus 717
  • ???jsp.display-item.citation.isi??? 664
social impact