It is a consequence of the classical Jordan bound for finite subgroups of linear groups that in each dimension n there are only finitely many finite simple groups which admit a faithful, linear action on the n-sphere. In the present paper we prove an analogue for smooth actions on arbitrary homology n-spheres: in each dimension n there are only finitely many finite simple groups which admit a faithful, smooth action on some homology sphere of dimension n, and in particular on the n-sphere. We discuss also the finite simple groups which admit an action on a homology sphere of dimension 3, 4 or 5.

On finite simple groups acting on homology spheres

ZIMMERMANN, BRUNO
2013-01-01

Abstract

It is a consequence of the classical Jordan bound for finite subgroups of linear groups that in each dimension n there are only finitely many finite simple groups which admit a faithful, linear action on the n-sphere. In the present paper we prove an analogue for smooth actions on arbitrary homology n-spheres: in each dimension n there are only finitely many finite simple groups which admit a faithful, smooth action on some homology sphere of dimension n, and in particular on the n-sphere. We discuss also the finite simple groups which admit an action on a homology sphere of dimension 3, 4 or 5.
File in questo prodotto:
File Dimensione Formato  
11368 2557914_Zimmermann_On finite simple groups acting on homology spheres.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 383.74 kB
Formato Adobe PDF
383.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2557914
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
social impact