In his seminal paper Cover used geometrical arguments to compute the probability of separating two sets of patterns with a perceptron. We extend these ideas to feedforward networks with hidden layers. There are intrinsic limitations to the number of patterns that a net of this kind can separate and we find quantitative bounds valid far any net with d input and h hidden neurons.

Properties of Feed-Forward Neural Networks

BUDINICH, MARCO;MILOTTI, EDOARDO
1992-01-01

Abstract

In his seminal paper Cover used geometrical arguments to compute the probability of separating two sets of patterns with a perceptron. We extend these ideas to feedforward networks with hidden layers. There are intrinsic limitations to the number of patterns that a net of this kind can separate and we find quantitative bounds valid far any net with d input and h hidden neurons.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2558141
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact