The classical Cover results on linear separability of points in R^d are a milestone in neural network theory. Nevertheless they are not valid for digital input networks because in this case the points are not in general position being vertices of a d-dimensional hypercube. I show here that for large d all Cover findings can be extended to this case. It is also shown that for n < O((d + 1)^(3/2)) the number of linear separations of n random hypercube vertices tends to that of n points in general position.

On Linear Separability of Random Subsets of Hypercube Vertices

BUDINICH, MARCO
1991-01-01

Abstract

The classical Cover results on linear separability of points in R^d are a milestone in neural network theory. Nevertheless they are not valid for digital input networks because in this case the points are not in general position being vertices of a d-dimensional hypercube. I show here that for large d all Cover findings can be extended to this case. It is also shown that for n < O((d + 1)^(3/2)) the number of linear separations of n random hypercube vertices tends to that of n points in general position.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2558355
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact