We draw the basic lines for an approach to build mathematical and programmable network models, to be applied in the study of populations of cancer-cells at different stages of disease development. The methodology we propose uses a stochastic Concurrent Constraint Programming language, a flexible stochastic modelling language employed to code networks of agents. It is applied to (and partially motivated by) the study of differently characterized populations of prostate cancer cells. In particular, we prove how our method is suitable to systematically reconstruct and compare different mathematical models of prostate cancer growth—together with interactions with different kinds of hormone therapy—at different levels of refinement. Moreover, we show our technique at work in analysing the nature of noise and in the possible presence of competing mechanisms in the models proposed.

Studying cancer-cell populations by programmable models of networks

BORTOLUSSI, LUCA;
2012-01-01

Abstract

We draw the basic lines for an approach to build mathematical and programmable network models, to be applied in the study of populations of cancer-cells at different stages of disease development. The methodology we propose uses a stochastic Concurrent Constraint Programming language, a flexible stochastic modelling language employed to code networks of agents. It is applied to (and partially motivated by) the study of differently characterized populations of prostate cancer cells. In particular, we prove how our method is suitable to systematically reconstruct and compare different mathematical models of prostate cancer growth—together with interactions with different kinds of hormone therapy—at different levels of refinement. Moreover, we show our technique at work in analysing the nature of noise and in the possible presence of competing mechanisms in the models proposed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2562242
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact