PURPOSE OF REVIEW: Mitochondria are the site of oxidative substrate utilization to produce adenosine triphosphate for normal tissue function. Tissue substrate utilization is impaired in ageing and type 2 diabetes. Defects in mitochondrial gene expression, protein synthesis and function occur with ageing in various tissues including skeletal muscle, and are emerging in individuals with type 2 diabetes. The current review will discuss advances in the understanding of skeletal muscle mitochondrial alterations associated with age and type 2 diabetes. RECENT FINDINGS: Insulin acutely stimulates skeletal muscle mitochondrial protein synthesis and adenosine triphosphate production. These insulin effects are impaired in insulin-resistant patients with type 2 diabetes who also exhibit defective basal muscle mitochondrial function. The age-related reduction in mitochondrial adenosine triphosphate production has been confirmed in vivo in skeletal muscle in humans and rodents. SUMMARY: The emerging concept that insulin stimulates mitochondrial protein synthesis and function indicates potential novel molecular mechanisms of metabolic defects in type 2 diabetes, particularly in the post-prandial period characterized by acute increments of plasma insulin concentrations. The potential relationship between insulin resistance and basal post-absorptive muscle mitochondrial defects should be further investigated. As ageing is characterized by insulin resistance, the hypothesis that impaired insulin action could contribute to age-related muscle mitochondrial dysfunction, and metabolic alterations should be addressed.

Skeletal muscle mitochondrial protein metabolism and function in ageing and type 2 diabetes.

BARAZZONI, ROCCO
2004-01-01

Abstract

PURPOSE OF REVIEW: Mitochondria are the site of oxidative substrate utilization to produce adenosine triphosphate for normal tissue function. Tissue substrate utilization is impaired in ageing and type 2 diabetes. Defects in mitochondrial gene expression, protein synthesis and function occur with ageing in various tissues including skeletal muscle, and are emerging in individuals with type 2 diabetes. The current review will discuss advances in the understanding of skeletal muscle mitochondrial alterations associated with age and type 2 diabetes. RECENT FINDINGS: Insulin acutely stimulates skeletal muscle mitochondrial protein synthesis and adenosine triphosphate production. These insulin effects are impaired in insulin-resistant patients with type 2 diabetes who also exhibit defective basal muscle mitochondrial function. The age-related reduction in mitochondrial adenosine triphosphate production has been confirmed in vivo in skeletal muscle in humans and rodents. SUMMARY: The emerging concept that insulin stimulates mitochondrial protein synthesis and function indicates potential novel molecular mechanisms of metabolic defects in type 2 diabetes, particularly in the post-prandial period characterized by acute increments of plasma insulin concentrations. The potential relationship between insulin resistance and basal post-absorptive muscle mitochondrial defects should be further investigated. As ageing is characterized by insulin resistance, the hypothesis that impaired insulin action could contribute to age-related muscle mitochondrial dysfunction, and metabolic alterations should be addressed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2574225
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 37
  • ???jsp.display-item.citation.isi??? ND
social impact