We prove the existence of multiple positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space \begin{equation*} \begin{cases} -{\rm div}\Big( \nabla u /\sqrt{1 - |\nabla u|^2}\Big)= f(x,u, \nabla u) & \hbox{ in } \Omega, \\ u=0& \hbox{ on } \partial \Omega. \end{cases} \end{equation*} Here $\Omega$ is a bounded regular domain in $\RR^N$ and the function $f=f(x,s,\xi)$ is either sublinear, or superlinear, or sub-superlinear near $s=0$. The proof combines topological and variational methods.
Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space
CORSATO, CHIARA;OBERSNEL, Franco;OMARI, PIERPAOLO;RIVETTI, SABRINA
2013-01-01
Abstract
We prove the existence of multiple positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space \begin{equation*} \begin{cases} -{\rm div}\Big( \nabla u /\sqrt{1 - |\nabla u|^2}\Big)= f(x,u, \nabla u) & \hbox{ in } \Omega, \\ u=0& \hbox{ on } \partial \Omega. \end{cases} \end{equation*} Here $\Omega$ is a bounded regular domain in $\RR^N$ and the function $f=f(x,s,\xi)$ is either sublinear, or superlinear, or sub-superlinear near $s=0$. The proof combines topological and variational methods.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
COOR JMAA.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
428.86 kB
Formato
Adobe PDF
|
428.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.