Extracellular recordings were made in area V2 of behaving macaque monkeys. Neurons were classified into three groups: non-oriented cells, oriented cells with antagonistic areas and oriented cells without antagonistic areas in their receptive field. All neurons were tested with standard visual stimulations in order to assess whether they gave different responses to the movement of a stimulus and to the movement of its retinal image alone, when the stimulus was motionless and the animal voluntarily moved its eyes. To do this, neuronal responses obtained when a moving stimulus swept a stationary receptive field (during steady fixation) and when a moving receptive field swept a stationary stimulus (during tracking eye movements), were compared. The receptive field stimulation at retinal level was physically the same in both cases, but only in the first was there actual movement of the visual stimulus. Control trials, where the monkeys performed tracking eye movements without any intentional receptive field stimulation, were also carried out. Out of a total of 263 neurons isolated in the central 10 deg representation of area V2, 101 were fully studied with the visual stimulation described above. Most of these (83/101; 82%) gave about the same response to the two situations. About 14% (14/101) gave a good response to stimulus movements during steady fixation and a very weak one to retinal image displacements of stationary stimuli during visual tracking. We have called neurons of this type "real-motion cells" (cf. Galletti et al. 1984). None of the non-oriented cells was a real-motion one, while about an equal percentage of real-motion cells was found among the oriented cells with and without antagonistic areas. Finally, we found only 4 neurons which showed behaviour opposite to that of real-motion cells, i.e. they showed a better response to displacement of the retinal image of stationary stimuli than to actual movement of stimuli. We suggest that real-motion cells might contribute to correctly evaluating movement in the visual field in spite of eye movements and that they might allow recognition of the movement of an object even if it moves across a non-patterned visual background. Present data on area V2, together with similar results observed in area V1 (Galletti et al. 1984; Battaglini et al. 1986), support the view that these two cortical areas analyse the movement in a parallel fashion along with many other characteristics of the visual stimulus.

'Real-motion' cells in visual area V2 of behaving macaque monkeys.

BATTAGLINI, PIERO PAOLO;
1988-01-01

Abstract

Extracellular recordings were made in area V2 of behaving macaque monkeys. Neurons were classified into three groups: non-oriented cells, oriented cells with antagonistic areas and oriented cells without antagonistic areas in their receptive field. All neurons were tested with standard visual stimulations in order to assess whether they gave different responses to the movement of a stimulus and to the movement of its retinal image alone, when the stimulus was motionless and the animal voluntarily moved its eyes. To do this, neuronal responses obtained when a moving stimulus swept a stationary receptive field (during steady fixation) and when a moving receptive field swept a stationary stimulus (during tracking eye movements), were compared. The receptive field stimulation at retinal level was physically the same in both cases, but only in the first was there actual movement of the visual stimulus. Control trials, where the monkeys performed tracking eye movements without any intentional receptive field stimulation, were also carried out. Out of a total of 263 neurons isolated in the central 10 deg representation of area V2, 101 were fully studied with the visual stimulation described above. Most of these (83/101; 82%) gave about the same response to the two situations. About 14% (14/101) gave a good response to stimulus movements during steady fixation and a very weak one to retinal image displacements of stationary stimuli during visual tracking. We have called neurons of this type "real-motion cells" (cf. Galletti et al. 1984). None of the non-oriented cells was a real-motion one, while about an equal percentage of real-motion cells was found among the oriented cells with and without antagonistic areas. Finally, we found only 4 neurons which showed behaviour opposite to that of real-motion cells, i.e. they showed a better response to displacement of the retinal image of stationary stimuli than to actual movement of stimuli. We suggest that real-motion cells might contribute to correctly evaluating movement in the visual field in spite of eye movements and that they might allow recognition of the movement of an object even if it moves across a non-patterned visual background. Present data on area V2, together with similar results observed in area V1 (Galletti et al. 1984; Battaglini et al. 1986), support the view that these two cortical areas analyse the movement in a parallel fashion along with many other characteristics of the visual stimulus.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2591455
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 32
social impact