Recent studies suggest that the active observer combines optic flow information with extra-retinal signals resulting from head motion. Such a combination allows, in principle, a correct discrimination of the presence or absence of surface rotation. In Experiments 1 and 2, observers were asked to perform such discrimination task while performing a lateral head shift. In Experiment 3, observers were shown the optic flow generated by their own movement with respect to a stationary planar slanted surface and were asked to classify perceived surface rotation as being small or large. We found that the perception of surface motion was systematically biased. We found that, in active, as well as in passive vision, perceived surface rotation was affected by the deformation component of the first-order optic flow, regardless of the actual surface rotation. We also found that the addition of a null disparity field increased the likelihood of perceiving surface rotation in active, but not in passive vision. Both these results suggest that vestibular information, provided by active vision, is not sufficient for veridical 3D shape and motion recovery from the optic flow.

Systematic distortions of perceived planar surface motion in active vision

FANTONI, CARLO;
2010-01-01

Abstract

Recent studies suggest that the active observer combines optic flow information with extra-retinal signals resulting from head motion. Such a combination allows, in principle, a correct discrimination of the presence or absence of surface rotation. In Experiments 1 and 2, observers were asked to perform such discrimination task while performing a lateral head shift. In Experiment 3, observers were shown the optic flow generated by their own movement with respect to a stationary planar slanted surface and were asked to classify perceived surface rotation as being small or large. We found that the perception of surface motion was systematically biased. We found that, in active, as well as in passive vision, perceived surface rotation was affected by the deformation component of the first-order optic flow, regardless of the actual surface rotation. We also found that the addition of a null disparity field increased the likelihood of perceiving surface rotation in active, but not in passive vision. Both these results suggest that vestibular information, provided by active vision, is not sufficient for veridical 3D shape and motion recovery from the optic flow.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2611027
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact