We prove an optimal stability estimate for Electrical Impedance Tomography with local data, in the case when the conductivity is precisely known on a neighborhood of the boundary. The main novelty here is that we provide a rather general method which enables to obtain the Hölder dependence of a global Dirichlet to Neumann map from a local one on a larger domain when, in the layer between the two boundaries, the coefficient is known.

Single-logarithmic stability for the Calderón problem with local data

ALESSANDRINI, GIOVANNI;
2012-01-01

Abstract

We prove an optimal stability estimate for Electrical Impedance Tomography with local data, in the case when the conductivity is precisely known on a neighborhood of the boundary. The main novelty here is that we provide a rather general method which enables to obtain the Hölder dependence of a global Dirichlet to Neumann map from a local one on a larger domain when, in the layer between the two boundaries, the coefficient is known.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2611421
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact