To explore the hydrophobic binding region of the σ(1) receptor protein, regioisomeric spirocyclic thiophenes 9-11 were developed as versatile building blocks. Regioselective α- and β-arylation using the catalyst systems PdCl(2)/bipy/Ag(2)CO(3) and PdCl(2)/P[OCH(CF(3))(2)](3)/Ag(2)CO(3) allowed the introduction of various aryl moieties at different positions in the last step of the synthesis. The increasing σ(1) affinity in the order 4 < 5/6 < 7/8 indicates that the positions of the additional aryl moiety and the S atom in the spirocyclic thiophene systems control the σ(1) affinity. The main features of the pharmacophore model developed for this class of σ(1) ligands are a positive ionizable group, a H-bond acceptor group, two hydrophobic moieties, and one hydrophobic aromatic group. Docking of the ligands into a σ(1) 3D homology model via molecular mechanics/Poisson-Boltzmann surface area calculations led to a very good correlation between the experimentally determined and estimated free energy of receptor binding. These calculations support the hypothesis of a reverse binding mode of ligands bearing the aryl moiety at the "top" (compounds 2, 3, 7, and 8) and "left" (compounds 4, 5, and 6) positions, respectively.
Pd-Catalyzed Direct C-H Bond Functionalization of Spirocyclic σ(1) Ligands: Generation of a Pharmacophore Model and Analysis of the Reverse Binding Mode by Docking into a 3D Homology Model of the σ(1) Receptor.
DAL COL, VALENTINA;LAURINI, ERIK;PRICL, SABRINA;
2012-01-01
Abstract
To explore the hydrophobic binding region of the σ(1) receptor protein, regioisomeric spirocyclic thiophenes 9-11 were developed as versatile building blocks. Regioselective α- and β-arylation using the catalyst systems PdCl(2)/bipy/Ag(2)CO(3) and PdCl(2)/P[OCH(CF(3))(2)](3)/Ag(2)CO(3) allowed the introduction of various aryl moieties at different positions in the last step of the synthesis. The increasing σ(1) affinity in the order 4 < 5/6 < 7/8 indicates that the positions of the additional aryl moiety and the S atom in the spirocyclic thiophene systems control the σ(1) affinity. The main features of the pharmacophore model developed for this class of σ(1) ligands are a positive ionizable group, a H-bond acceptor group, two hydrophobic moieties, and one hydrophobic aromatic group. Docking of the ligands into a σ(1) 3D homology model via molecular mechanics/Poisson-Boltzmann surface area calculations led to a very good correlation between the experimentally determined and estimated free energy of receptor binding. These calculations support the hypothesis of a reverse binding mode of ligands bearing the aryl moiety at the "top" (compounds 2, 3, 7, and 8) and "left" (compounds 4, 5, and 6) positions, respectively.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.