Epsins are endocytic adaptors with putative functions in general aspects of clathrin-mediated endocytosis as well as in the internalization of specific membrane proteins. We have now tested the role of the ubiquitously expressed epsin genes, Epn1 and Epn2, by a genetic approach in mice. While either gene is dispensable for life, their combined inactivation results in embryonic lethality at E9.5-E10, i.e., at the beginning of organogenesis. Consistent with studies in Drosophila, where epsin endocytic function was linked to Notch activation, developmental defects observed in epsin 1/2 double knockout (DKO) embryos recapitulated those produced by a global impairment of Notch signaling. Accordingly, expression of Notch primary target genes was severely reduced in DKO embryos. However, housekeeping forms of clathrin-mediated endocytosis were not impaired in cells derived from these embryos. These findings support a role of epsin as a specialized endocytic adaptor, with a critical role in the activation of Notch signaling in mammals.

Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice.

COLLESI, CHIARA;
2009-01-01

Abstract

Epsins are endocytic adaptors with putative functions in general aspects of clathrin-mediated endocytosis as well as in the internalization of specific membrane proteins. We have now tested the role of the ubiquitously expressed epsin genes, Epn1 and Epn2, by a genetic approach in mice. While either gene is dispensable for life, their combined inactivation results in embryonic lethality at E9.5-E10, i.e., at the beginning of organogenesis. Consistent with studies in Drosophila, where epsin endocytic function was linked to Notch activation, developmental defects observed in epsin 1/2 double knockout (DKO) embryos recapitulated those produced by a global impairment of Notch signaling. Accordingly, expression of Notch primary target genes was severely reduced in DKO embryos. However, housekeeping forms of clathrin-mediated endocytosis were not impaired in cells derived from these embryos. These findings support a role of epsin as a specialized endocytic adaptor, with a critical role in the activation of Notch signaling in mammals.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2632501
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? 66
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 80
social impact