Until now, hepatocytes have been the only known cell source of macrophage-stimulating protein (MSP), and tissue macrophages have been the cells on which the biologic effects of MSP have been proved. To extend the understanding of the biologic meaning of MSP, it was investigated whether MSP operates in the kidney. MSP protein was evaluated by Western blot in supernatant of cultured human tubular cells (HK2) and human mesangial cells (HMC). MSP mRNA was investigated in HK2 by reverse transcription-polymerase chain reaction (RT-PCR). The expression of the MSP receptor, RON, was evaluated in HMC and HK2 by Western blot. RON mRNA was investigated in HMC by RT-PCR. The expression of MSP and RON in normal human renal tissue was studied by immunohistochemistry. HMC were stimulated with recombinant MSP (rMSP) and HK2 supernatant to study cell growth, migration, and the capacity to invade an artificial collagen matrix and synthesize interleukin-6 (IL-6). HK2 produced MSP and expressed RON in a form that was phosphorylated by rMSP. HMC expressed RON but did not produce MSP. MSP in HK2 supernatant and rMSP induced in HMC phosphorylation of RON, growth, migration, invasion, and IL-6 synthesis. In normal human kidney, tubules expressed MSP and RON. These results indicate a novel field of operation for MSP and suggest a pathogenic role of the MSP/RON system in renal disease. In fact, MSP released by tubular cells may recruit monocytes/ macrophages in inflammatory tubulointerstitial disorders. In addition, MSP either circulating or as paracrine product may sustain glomerular mesangioproliferative disease.

Macrophage-stimulating protein is produced by tubular cells and activates mesangial cells

COLLESI, CHIARA;
2002-01-01

Abstract

Until now, hepatocytes have been the only known cell source of macrophage-stimulating protein (MSP), and tissue macrophages have been the cells on which the biologic effects of MSP have been proved. To extend the understanding of the biologic meaning of MSP, it was investigated whether MSP operates in the kidney. MSP protein was evaluated by Western blot in supernatant of cultured human tubular cells (HK2) and human mesangial cells (HMC). MSP mRNA was investigated in HK2 by reverse transcription-polymerase chain reaction (RT-PCR). The expression of the MSP receptor, RON, was evaluated in HMC and HK2 by Western blot. RON mRNA was investigated in HMC by RT-PCR. The expression of MSP and RON in normal human renal tissue was studied by immunohistochemistry. HMC were stimulated with recombinant MSP (rMSP) and HK2 supernatant to study cell growth, migration, and the capacity to invade an artificial collagen matrix and synthesize interleukin-6 (IL-6). HK2 produced MSP and expressed RON in a form that was phosphorylated by rMSP. HMC expressed RON but did not produce MSP. MSP in HK2 supernatant and rMSP induced in HMC phosphorylation of RON, growth, migration, invasion, and IL-6 synthesis. In normal human kidney, tubules expressed MSP and RON. These results indicate a novel field of operation for MSP and suggest a pathogenic role of the MSP/RON system in renal disease. In fact, MSP released by tubular cells may recruit monocytes/ macrophages in inflammatory tubulointerstitial disorders. In addition, MSP either circulating or as paracrine product may sustain glomerular mesangioproliferative disease.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2632509
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 32
social impact