By taking as a “prototype problem” a one-delay linear autonomous system of delay differential equations we present the problem of computing the characteristic roots of a retarded functional differential equation as an eigenvalue problem for a derivative operator with non-local boundary conditions given by the particular system considered. This theory can be enlarged to more general classes of functional equations such as neutral delay equations, age-structured population models and mixed-type functional differential equations. It is thus relevant to have a numerical technique to approximate the eigenvalues of derivative operators under nonlocal boundary conditions. In this paper we propose to discretize such operators by pseudospectral techniques and turn the original eigenvalue problem into a matrix eigenvalue problem. This approach is shown to be particularly efficient due to the well-known “spectral accuracy” convergence of pseudospectral methods. Numerical examples are given.

Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions

MASET, STEFANO;
2006-01-01

Abstract

By taking as a “prototype problem” a one-delay linear autonomous system of delay differential equations we present the problem of computing the characteristic roots of a retarded functional differential equation as an eigenvalue problem for a derivative operator with non-local boundary conditions given by the particular system considered. This theory can be enlarged to more general classes of functional equations such as neutral delay equations, age-structured population models and mixed-type functional differential equations. It is thus relevant to have a numerical technique to approximate the eigenvalues of derivative operators under nonlocal boundary conditions. In this paper we propose to discretize such operators by pseudospectral techniques and turn the original eigenvalue problem into a matrix eigenvalue problem. This approach is shown to be particularly efficient due to the well-known “spectral accuracy” convergence of pseudospectral methods. Numerical examples are given.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2635332
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 82
social impact