We discuss the continuous real representability of a not necessarily total preorder on a normal topological space in connection with a suitable continuity assumption, called C-continuity in this paper. We show that a topology $\tau$ on a set $X$ is normal if and only if the topological preordered space $(X, \precsim , \tau )$ is normally preordered for every $C$-continuous preorder $\precsim$ on $(X, \tau )$. We also prove that a C-continuous preorder $\precsim$ on a normal topological space $(X, \tau )$ is representable by means of a continuous order-preserving function $u$ if and only if $\precsim$ verifies a suitable separability condition \`a la Nachbin.

Continuous order-preserving functions for nontotal preorders on normal spaces

BOSI, GIANNI;ISLER, ROMANO
2012-01-01

Abstract

We discuss the continuous real representability of a not necessarily total preorder on a normal topological space in connection with a suitable continuity assumption, called C-continuity in this paper. We show that a topology $\tau$ on a set $X$ is normal if and only if the topological preordered space $(X, \precsim , \tau )$ is normally preordered for every $C$-continuous preorder $\precsim$ on $(X, \tau )$. We also prove that a C-continuous preorder $\precsim$ on a normal topological space $(X, \tau )$ is representable by means of a continuous order-preserving function $u$ if and only if $\precsim$ verifies a suitable separability condition \`a la Nachbin.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2641871
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact