Load commutated inverters (LCIs) are still widely used for their robustness and reliability in high-power synchronous motor drives, in either single or multiple three-phase configurations. A restriction to their use in high-speed applications is due to the criticalities of thyristor operation at high switching frequencies. The upper frequency limits of LCIs are usually addressed in the existing literature as something independent of the drive architecture. On the contrary, this paper highlights how the maximum frequency that can be safely attained closely relates to the number of LCIs that are used to supply the synchronous motor. In fact, moving from a single to multiple three-phase arrangements is proved to introduce more stringent frequency constraints due to the mutual interaction between stator windings during commutations. Frequency limits for safe operation of single- and multiple-LCI drives are derived in quantitative terms and experimentally assessed on a 2-MW synchronous motor fed by a couple of LCIs. Practical implications of such limits in the design of high-power high-speed drives are finally discussed.

Investigation Into the High-Frequency Limits and Performance of Load Commutated Inverters for High-Speed Synchronous Motor Drives

TESSAROLO, ALBERTO;MENIS, ROBERTO
2013-01-01

Abstract

Load commutated inverters (LCIs) are still widely used for their robustness and reliability in high-power synchronous motor drives, in either single or multiple three-phase configurations. A restriction to their use in high-speed applications is due to the criticalities of thyristor operation at high switching frequencies. The upper frequency limits of LCIs are usually addressed in the existing literature as something independent of the drive architecture. On the contrary, this paper highlights how the maximum frequency that can be safely attained closely relates to the number of LCIs that are used to supply the synchronous motor. In fact, moving from a single to multiple three-phase arrangements is proved to introduce more stringent frequency constraints due to the mutual interaction between stator windings during commutations. Frequency limits for safe operation of single- and multiple-LCI drives are derived in quantitative terms and experimentally assessed on a 2-MW synchronous motor fed by a couple of LCIs. Practical implications of such limits in the design of high-power high-speed drives are finally discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2655309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact