We discuss the existence of an upper semicontinuous multi-utility representation of a preorder on a topological space. We then prove that every weakly upper semicontinuous preorder is extended by an upper semicontinuous preorder and use this fact in order to show that every weakly upper semicontinuous preorder on a compact topological space admits a maximal element.

EXISTENCE OF MAXIMAL ELEMENTS OF SEMICONTINUOUS PREORDERS

BOSI, GIANNI;
2013-01-01

Abstract

We discuss the existence of an upper semicontinuous multi-utility representation of a preorder on a topological space. We then prove that every weakly upper semicontinuous preorder is extended by an upper semicontinuous preorder and use this fact in order to show that every weakly upper semicontinuous preorder on a compact topological space admits a maximal element.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2657113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact