We present an analysis of the relation between the masses of cluster- and group-sized halos, extracted from $\Lambda$CDM cosmological N-body and hydrodynamic simulations, and their velocity dispersions, at different redshifts from $z=2$ to $z=0$. The main aim of this analysis is to understand how the implementation of baryonic physics in simulations affects such relation, i.e. to what extent the use of the velocity dispersion as a proxy for cluster mass determination is hampered by the imperfect knowledge of the baryonic physics. In our analysis we use several sets of simulations with different physics implemented: one DM-only simulation, one simulation with non-radiative gas, and two radiative simulations, one of which with feedback from Active Galactic Nuclei. Velocity dispersions are determined using three different tracers, dark matter (DM hereafter) particles, subhalos, and galaxies. We confirm that DM particles trace a relation that is fully consistent with the theoretical expectations based on the virial theorem, $\sigma_v \propto M^\alpha$ with $\alpha = 1/3$, and with previous results presented in the literature. On the other hand, subhalos and galaxies trace steeper relations, with velocity dispersion scaling with mass with $\alpha>1/3$, and with larger values of the normalization. Such relations imply that galaxies and subhalos have a $\sim10$ per cent velocity bias relative to the DM particles, which can be either positive or negative, depending on halo mass, redshift and physics implemented in the simulation. We explain these differences as due to dynamical processes, namely dynamical friction and tidal disruption, acting on substructures and galaxies, but not on DM particles. These processes appear to be more or less effective, depending on the halo masses and the importance of baryon cooling, and may create a non-trivial dependence of the velocity bias and the $\soneD$--$\Mtwo$ relation on the tracer, the halo mass and its redshift. These results are relevant in view of the application of velocity dispersion as a proxy for cluster masses in ongoing and future large redshift surveys.

The relation between velocity dispersion and mass in simulated clusters of galaxies: dependence on the tracer and the baryonic physics

BIVIANO, ANDREA;BORGANI, STEFANO;MURANTE, GIUSEPPE;FABJAN, DUNJA
2013-01-01

Abstract

We present an analysis of the relation between the masses of cluster- and group-sized halos, extracted from $\Lambda$CDM cosmological N-body and hydrodynamic simulations, and their velocity dispersions, at different redshifts from $z=2$ to $z=0$. The main aim of this analysis is to understand how the implementation of baryonic physics in simulations affects such relation, i.e. to what extent the use of the velocity dispersion as a proxy for cluster mass determination is hampered by the imperfect knowledge of the baryonic physics. In our analysis we use several sets of simulations with different physics implemented: one DM-only simulation, one simulation with non-radiative gas, and two radiative simulations, one of which with feedback from Active Galactic Nuclei. Velocity dispersions are determined using three different tracers, dark matter (DM hereafter) particles, subhalos, and galaxies. We confirm that DM particles trace a relation that is fully consistent with the theoretical expectations based on the virial theorem, $\sigma_v \propto M^\alpha$ with $\alpha = 1/3$, and with previous results presented in the literature. On the other hand, subhalos and galaxies trace steeper relations, with velocity dispersion scaling with mass with $\alpha>1/3$, and with larger values of the normalization. Such relations imply that galaxies and subhalos have a $\sim10$ per cent velocity bias relative to the DM particles, which can be either positive or negative, depending on halo mass, redshift and physics implemented in the simulation. We explain these differences as due to dynamical processes, namely dynamical friction and tidal disruption, acting on substructures and galaxies, but not on DM particles. These processes appear to be more or less effective, depending on the halo masses and the importance of baryon cooling, and may create a non-trivial dependence of the velocity bias and the $\soneD$--$\Mtwo$ relation on the tracer, the halo mass and its redshift. These results are relevant in view of the application of velocity dispersion as a proxy for cluster masses in ongoing and future large redshift surveys.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2669931
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 190
  • ???jsp.display-item.citation.isi??? 186
social impact