In the perspective of a sustainable energy economy, CO2 reduction is attracting increasing attention as a key step toward the synthesis of fuels and valuable chemicals. A possible strategy to develop novel conversion catalysts consists in mimicking reaction centers available in nature, such as those in enzymes in which Fe, Ni, and Cu play a major role as active metals. In this respect, NiCu shows peculiar activity for both water-gas shift and methanol synthesis reactions. The identification of useful descriptors to engineer and tune the reactivity of a surface in the desired way is one of the main objectives of the science of catalysis, with evident applicative interest, as in this case. To this purpose, a crucial issue is the determination of the relevant active sites and rate-limiting steps. We show here that this approach can be exploited to design and tailor the catalytic activity and selectivity of a NiCu surface.

Steering the Chemistry of Carbon Oxides on a NiCu Catalyst

VESSELLI, ERIK;DRI, CARLO;PERONIO, ANGELO;BALDERESCHI, ALFONSO;COMELLI, GIOVANNI;PERESSI, MARIA
2013-01-01

Abstract

In the perspective of a sustainable energy economy, CO2 reduction is attracting increasing attention as a key step toward the synthesis of fuels and valuable chemicals. A possible strategy to develop novel conversion catalysts consists in mimicking reaction centers available in nature, such as those in enzymes in which Fe, Ni, and Cu play a major role as active metals. In this respect, NiCu shows peculiar activity for both water-gas shift and methanol synthesis reactions. The identification of useful descriptors to engineer and tune the reactivity of a surface in the desired way is one of the main objectives of the science of catalysis, with evident applicative interest, as in this case. To this purpose, a crucial issue is the determination of the relevant active sites and rate-limiting steps. We show here that this approach can be exploited to design and tailor the catalytic activity and selectivity of a NiCu surface.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2689986
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 28
social impact