Combined fast X-ray photoelectron spectroscopy and density functional theory calculations reveal the presence of two types of hydrogen adsorbate structures at the graphene/Ir(111) interface, namely, graphane-like islands and hydrogen dimer structures. While the former give rise to a periodic pattern, dimers tend to destroy the periodicity. Our data reveal distinctive growth rates and stability of both types of structures, thereby allowing one to obtain well-defined patterns of hydrogen clusters. The ability to control and manipulate the formation and size of hydrogen structures on graphene facilitates tailoring of its properties for a wide range of applications by means of covalent functionalization.

Controlling Hydrogenation of Graphene on Ir(111)

BARALDI, Alessandro;
2013-01-01

Abstract

Combined fast X-ray photoelectron spectroscopy and density functional theory calculations reveal the presence of two types of hydrogen adsorbate structures at the graphene/Ir(111) interface, namely, graphane-like islands and hydrogen dimer structures. While the former give rise to a periodic pattern, dimers tend to destroy the periodicity. Our data reveal distinctive growth rates and stability of both types of structures, thereby allowing one to obtain well-defined patterns of hydrogen clusters. The ability to control and manipulate the formation and size of hydrogen structures on graphene facilitates tailoring of its properties for a wide range of applications by means of covalent functionalization.
2013
http://pubs.acs.org/doi/abs/10.1021/nn400780x?prevSearch=%255BContrib%253A%2Bbaraldi%255D&searchHistoryKey=
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2691386
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 69
social impact