Abstract The administration of thrombolytic drugs is of proven benefit in a variety of clinical conditions requiring acute revascularization, including acute myocardial infarction (AMI), ischemic stroke, pulmonary embolism, and venous thrombosis. Generated plasmin can degrade non-target proteins, including apolipoprotein A-I (apoA-I), the major protein constituent of high-density lipoproteins (HDL). Aim of the present study was to compare the extent of apoA-I proteolytic degradation in AMI patients treated with two thrombolytic drugs, alteplase and the genetically engineered t-PA variant tenecteplase. ApoA-I degradation was evaluated in sera from 38 AMI patients treated with alteplase or tenecteplase. In vitro, apoA-I degradation was tested by incubating control sera or purified HDL with alteplase or tenecteplase at different concentrations (5-100 μg/ml). Treatment with alteplase and tenecteplase results in apoA-I proteolysis; the extent of apoA-I degradation was more pronounced in alteplase-treated patients than in tenecteplase-treated patients. In vitro, the extent of apoA-I proteolysis was higher in alteplase-treated sera than in tenecteplase-treated sera, in the whole drug concentration range. No direct effect of the two thrombolytic agents on apoA-I degradation was observed. In addition to apoA-I, apoA-IV was also degraded by the two thrombolytic agents and again proteolytic degradation was higher with alteplase than tenecteplase. In conclusion, this study indicates that both alteplase and tenecteplase cause plasmin-mediated proteolysis of apoA-I, with alteplase resulting in a greater apoA-I degradation than tenecteplase, potentially causing a transient impairment of HDL atheroprotective functions.
Off-target effects of thrombolytic drugs: apolipoprotein A-I proteolysis by alteplase and tenecteplase.
SINAGRA, GIANFRANCO;
2013-01-01
Abstract
Abstract The administration of thrombolytic drugs is of proven benefit in a variety of clinical conditions requiring acute revascularization, including acute myocardial infarction (AMI), ischemic stroke, pulmonary embolism, and venous thrombosis. Generated plasmin can degrade non-target proteins, including apolipoprotein A-I (apoA-I), the major protein constituent of high-density lipoproteins (HDL). Aim of the present study was to compare the extent of apoA-I proteolytic degradation in AMI patients treated with two thrombolytic drugs, alteplase and the genetically engineered t-PA variant tenecteplase. ApoA-I degradation was evaluated in sera from 38 AMI patients treated with alteplase or tenecteplase. In vitro, apoA-I degradation was tested by incubating control sera or purified HDL with alteplase or tenecteplase at different concentrations (5-100 μg/ml). Treatment with alteplase and tenecteplase results in apoA-I proteolysis; the extent of apoA-I degradation was more pronounced in alteplase-treated patients than in tenecteplase-treated patients. In vitro, the extent of apoA-I proteolysis was higher in alteplase-treated sera than in tenecteplase-treated sera, in the whole drug concentration range. No direct effect of the two thrombolytic agents on apoA-I degradation was observed. In addition to apoA-I, apoA-IV was also degraded by the two thrombolytic agents and again proteolytic degradation was higher with alteplase than tenecteplase. In conclusion, this study indicates that both alteplase and tenecteplase cause plasmin-mediated proteolysis of apoA-I, with alteplase resulting in a greater apoA-I degradation than tenecteplase, potentially causing a transient impairment of HDL atheroprotective functions.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.