The development of novel molecular and biomolecular devices relies on the understanding of charge transport across molecule-substrate interfaces. However, different strategies adopted so far for fabricating and studying transport through metal-molecule-metal junctions yield values for the transport coefficients that differ by up to orders of magnitude even for the same junction. Conductive tip atomic force microscopy (CT-AFM) allows for the simultaneous measurement of transport and morphological properties of molecular assemblies, but absolute transport measurements depend on the nature of the AFM tip-molecule contact. In this work we present a differential approach to the study of metal-molecule-metal junctions based on the combination of AFM-driven nanolithography and CT-AFM. We nanograft patches of alkanethiol molecules in a self-assembled monolayer of alkanethiol molecules of different chain length and measure by CT-AFM the morphology and the transport properties of the nanopatches and of the reference layer. The method allows for the determination of the differential resistance between the two molecular layers and is thus independent of environmental factors. The validity of this approach is demonstrated by measuring the tunneling decay constant of alkanethiols as a function of their length.

Electron Transfer Mediating Properties of Hydrocarbons as a Function of Chain Length: A Differential Scanning Conductive Tip Atomic Force Microscopy Investigation

SCAINI, DENIS;
2008-01-01

Abstract

The development of novel molecular and biomolecular devices relies on the understanding of charge transport across molecule-substrate interfaces. However, different strategies adopted so far for fabricating and studying transport through metal-molecule-metal junctions yield values for the transport coefficients that differ by up to orders of magnitude even for the same junction. Conductive tip atomic force microscopy (CT-AFM) allows for the simultaneous measurement of transport and morphological properties of molecular assemblies, but absolute transport measurements depend on the nature of the AFM tip-molecule contact. In this work we present a differential approach to the study of metal-molecule-metal junctions based on the combination of AFM-driven nanolithography and CT-AFM. We nanograft patches of alkanethiol molecules in a self-assembled monolayer of alkanethiol molecules of different chain length and measure by CT-AFM the morphology and the transport properties of the nanopatches and of the reference layer. The method allows for the determination of the differential resistance between the two molecular layers and is thus independent of environmental factors. The validity of this approach is demonstrated by measuring the tunneling decay constant of alkanethiols as a function of their length.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2695219
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact