Dasatinib is a second-generation BCR-ABL inhibitor approved for the treatment of patients with chronic myeloid leukemia, both in the frontline and in the imatinib-resistant/intolerant settings. The high affinity of dasatinib for the protein is currently assumed to result from its ability to bind both the active and inactive conformations of the BCR-ABL kinase. In the present work, using state of the art molecular simulation techniques we prove that dasatinib exhibits a highly selective preference for the active (open) BCR-ABL conformation. By using three different BCR-ABL conformations (active, inactive, and intermediate inactive) we show that, from a thermodynamic standpoint, the affinity of dasatinib for BCR-ABL drastically decreases in the order: active > alternative inactive > inactive, as a result of differential contributions from the single residues lining the kinase binding pocket and the concomitant stabilization/destabilization of the kinase hydrophobic spine. Molecule-pulling experiments also corroborate this trend as significantly lower forces and smaller times are required to extract dasatinib from its inactive BCR-ABL complexes with respect to the active complex counterparts. Importantly, our results support recent NMR solution results demonstrating no evidence of dasatinib bound to the inactive form of BCR-ABL.

Through the open door: Preferential binding of dasatinib to the active form of BCR-ABL unveiled by in silico experiments

LAURINI, ERIK;POSOCCO, PAOLA;FERMEGLIA, MAURIZIO;PRICL, SABRINA
2013-01-01

Abstract

Dasatinib is a second-generation BCR-ABL inhibitor approved for the treatment of patients with chronic myeloid leukemia, both in the frontline and in the imatinib-resistant/intolerant settings. The high affinity of dasatinib for the protein is currently assumed to result from its ability to bind both the active and inactive conformations of the BCR-ABL kinase. In the present work, using state of the art molecular simulation techniques we prove that dasatinib exhibits a highly selective preference for the active (open) BCR-ABL conformation. By using three different BCR-ABL conformations (active, inactive, and intermediate inactive) we show that, from a thermodynamic standpoint, the affinity of dasatinib for BCR-ABL drastically decreases in the order: active > alternative inactive > inactive, as a result of differential contributions from the single residues lining the kinase binding pocket and the concomitant stabilization/destabilization of the kinase hydrophobic spine. Molecule-pulling experiments also corroborate this trend as significantly lower forces and smaller times are required to extract dasatinib from its inactive BCR-ABL complexes with respect to the active complex counterparts. Importantly, our results support recent NMR solution results demonstrating no evidence of dasatinib bound to the inactive form of BCR-ABL.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2706645
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact