Quantum mechanics is an extremely successful theory that agrees with every experiment. However, the principle of linear superposition, a central tenet of the theory, apparently contradicts a commonplace observation: macroscopic objects are never found in a linear superposition of position states. Moreover, the theory does not really explain as to why during a quantum measurement, deterministic evolution is replaced by probabilistic evolution, whose random outcomes obey the Born probability rule. In this article we review an experimentally falsifiable phenomenological proposal, known as Continuous Spontaneous Collapse: a stochastic non-linear modification of the Schr\"{o}dinger equation, which resolves these problems, while giving the same experimental results as quantum theory in the microscopic regime. Two underlying theories for this phenomenology are reviewed: Trace Dynamics, and gravity induced collapse. As one approaches the macroscopic scale, the predictions of this proposal begin to differ appreciably from those of quantum theory, and are being confronted by ongoing laboratory experiments that include molecular interferometry and optomechanics. These experiments, which essentially test the validity of linear superposition for large systems, are reviewed here, and their technical challenges, current results, and future prospects summarized. We conclude that it is likely that over the next two decades or so, these experiments can verify or rule out the proposed stochastic modification of quantum theory.
Models of Wave-function Collapse, Underlying Theories, and Experimental Tests
BASSI, ANGELO;
2013-01-01
Abstract
Quantum mechanics is an extremely successful theory that agrees with every experiment. However, the principle of linear superposition, a central tenet of the theory, apparently contradicts a commonplace observation: macroscopic objects are never found in a linear superposition of position states. Moreover, the theory does not really explain as to why during a quantum measurement, deterministic evolution is replaced by probabilistic evolution, whose random outcomes obey the Born probability rule. In this article we review an experimentally falsifiable phenomenological proposal, known as Continuous Spontaneous Collapse: a stochastic non-linear modification of the Schr\"{o}dinger equation, which resolves these problems, while giving the same experimental results as quantum theory in the microscopic regime. Two underlying theories for this phenomenology are reviewed: Trace Dynamics, and gravity induced collapse. As one approaches the macroscopic scale, the predictions of this proposal begin to differ appreciably from those of quantum theory, and are being confronted by ongoing laboratory experiments that include molecular interferometry and optomechanics. These experiments, which essentially test the validity of linear superposition for large systems, are reviewed here, and their technical challenges, current results, and future prospects summarized. We conclude that it is likely that over the next two decades or so, these experiments can verify or rule out the proposed stochastic modification of quantum theory.File | Dimensione | Formato | |
---|---|---|---|
RevModPhys.85.471.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.