Purpose: To evaluate the activity of a methacryloyloxydodecylpyridinium bromide (MDPB)-containing self-etching primer (Clearfil Protect Bond) against Streptococcus mutans and its ability to reduce biofilm formation on standardized experimental Class I restorations in vitro. Materials and Methods: Forty experimental Class I round restorations were prepared on enamel-dentin slabs using different adhesive strategies: group 1 = MDPB-containing adhesive system (Clearfil Protect Bond); group 2 = MDPB-free self-etching adhesive system (Clearfil SE Bond); group 3: MDPB-containing self-etching primer in combination with a fluoride-free bonding agent; group 4: MDPB-free self-etching primer in combination with a fluoride-containing bonding agent; group 5: a three-step etch-and-rinse adhesive system (Adper Scotchbond Multi Purpose). A Streptococcus mutans biofilm was grown for 48 h on the restoration surfaces and subsequently evaluated using scanning electron microscopy on three different areas: enamel, composite, and interface surfaces. Statistical analysis was performed by multiple ANOVA after data transformation. Results: Specimens in groups 2, 4 and 5 showed greater biofilm formation than those in groups 1 and 3 (p < 0.001) on all investigated substrates (enamel, composite, and interface areas). Conclusions: Specimens prepared with an MDPB-containing primer exhibited significant decreases in biofilm formation on Class I restorations in vitro. Further in vitro and in vivo studies are required to clarify the role of quaternary ammonium compounds in reducing bacterial biofilm formation on restoration surfaces.
Titolo: | Influence of MDPB-containing Primer on Streptococcus Mutans Biofilm Formation in Simulated Class I Restorations. | |
Autori: | ||
Data di pubblicazione: | 2013 | |
Rivista: | ||
Abstract: | Purpose: To evaluate the activity of a methacryloyloxydodecylpyridinium bromide (MDPB)-containing self-etching primer (Clearfil Protect Bond) against Streptococcus mutans and its ability to reduce biofilm formation on standardized experimental Class I restorations in vitro. Materials and Methods: Forty experimental Class I round restorations were prepared on enamel-dentin slabs using different adhesive strategies: group 1 = MDPB-containing adhesive system (Clearfil Protect Bond); group 2 = MDPB-free self-etching adhesive system (Clearfil SE Bond); group 3: MDPB-containing self-etching primer in combination with a fluoride-free bonding agent; group 4: MDPB-free self-etching primer in combination with a fluoride-containing bonding agent; group 5: a three-step etch-and-rinse adhesive system (Adper Scotchbond Multi Purpose). A Streptococcus mutans biofilm was grown for 48 h on the restoration surfaces and subsequently evaluated using scanning electron microscopy on three different areas: enamel, composite, and interface surfaces. Statistical analysis was performed by multiple ANOVA after data transformation. Results: Specimens in groups 2, 4 and 5 showed greater biofilm formation than those in groups 1 and 3 (p < 0.001) on all investigated substrates (enamel, composite, and interface areas). Conclusions: Specimens prepared with an MDPB-containing primer exhibited significant decreases in biofilm formation on Class I restorations in vitro. Further in vitro and in vivo studies are required to clarify the role of quaternary ammonium compounds in reducing bacterial biofilm formation on restoration surfaces. | |
Handle: | http://hdl.handle.net/11368/2720699 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.3290/j.jad.a28734 | |
Appare nelle tipologie: | 1.1 Articolo in Rivista |