In this paper, I propose a genetic learning approach to generate technical trading systems for stock timing. The most informative technical indicators are selected from a set of almost 5000 signals by a multi-objective genetic algorithm with variable string length. Successively, these signals are combined into a unique trading signal by a learning method. I test the expert weighting solution obtained by the plurality voting committee, the Bayesian model averaging and Boosting procedures with data from the S&P 500 Composite Index, in three market phases, up-trend, down-trend and sideways-movements, covering the period 2000-2006. Computational results indicate that the near-optimal set of rules varies among market phases but presents stable results and is able to reduce or eliminate losses in down-trend periods.

Investment using evolutionary learning methods and technical rules

KAUCIC, MASSIMILIANO
2010-01-01

Abstract

In this paper, I propose a genetic learning approach to generate technical trading systems for stock timing. The most informative technical indicators are selected from a set of almost 5000 signals by a multi-objective genetic algorithm with variable string length. Successively, these signals are combined into a unique trading signal by a learning method. I test the expert weighting solution obtained by the plurality voting committee, the Bayesian model averaging and Boosting procedures with data from the S&P 500 Composite Index, in three market phases, up-trend, down-trend and sideways-movements, covering the period 2000-2006. Computational results indicate that the near-optimal set of rules varies among market phases but presents stable results and is able to reduce or eliminate losses in down-trend periods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2727690
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact