We report on the formalization of two classical results about claw-free graphs, which have been verified correct by Jacob T. Schwartz’s proof-checker Referee. We have proved formally that every connected claw-free graph admits (1) a near-perfect matching, (2) Hamiltonian cycles in its square. To take advantage of the set-theoretic foundation of Referee, we exploited set equivalents of the graph-theoretic notions involved in our experiment: edge, source, square, etc. To ease some proofs, we have often resorted to weak counterparts of well-established notions such as cycle, claw-freeness, longest directed path, etc.

Set Graphs. III. Proof Pearl: Claw-Free Graphs Mirrored into Transitive Hereditarily Finite Sets

OMODEO, EUGENIO;
2012-01-01

Abstract

We report on the formalization of two classical results about claw-free graphs, which have been verified correct by Jacob T. Schwartz’s proof-checker Referee. We have proved formally that every connected claw-free graph admits (1) a near-perfect matching, (2) Hamiltonian cycles in its square. To take advantage of the set-theoretic foundation of Referee, we exploited set equivalents of the graph-theoretic notions involved in our experiment: edge, source, square, etc. To ease some proofs, we have often resorted to weak counterparts of well-established notions such as cycle, claw-freeness, longest directed path, etc.
http://link.springer.com/article/10.1007%2Fs10817-012-9272-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2740501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 5
social impact