Coadsorption of ammonia and nitric oxide on the (111) surface of platinum causes the mutual stabilization of the two adsorbed species, arranged in an ordered 2 × 2 mixed layer. Furthermore, their interaction leads also to stable, isolated triangular units, which we observe on the surface after annealing to 345 K. Having provided in the preceding article (10.1021/jp406068y) a detailed structural description of the NH3–NO mixed layer, we focus here on the stabilizing intermolecular interactions. By combining scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations, we identify the isolated triangular units as formed by one NH3 and three NO molecules, and we characterize them in terms of structure, energetics, and charge rearrangement. Eventually, we investigate the nature of the chemical bond between the coadsorbed NH3 and NO both in the mixed layer and in the isolated triangular units, pointing out the essential role of the surface mediation in inducing attractive dipole–dipole interactions and the presence of hydrogen bonds.

NH3–NO Coadsorption System on Pt(111). II. Intermolecular Interaction

PERONIO, ANGELO;DRI, CARLO;COMELLI, GIOVANNI;PERESSI, MARIA
2013-01-01

Abstract

Coadsorption of ammonia and nitric oxide on the (111) surface of platinum causes the mutual stabilization of the two adsorbed species, arranged in an ordered 2 × 2 mixed layer. Furthermore, their interaction leads also to stable, isolated triangular units, which we observe on the surface after annealing to 345 K. Having provided in the preceding article (10.1021/jp406068y) a detailed structural description of the NH3–NO mixed layer, we focus here on the stabilizing intermolecular interactions. By combining scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations, we identify the isolated triangular units as formed by one NH3 and three NO molecules, and we characterize them in terms of structure, energetics, and charge rearrangement. Eventually, we investigate the nature of the chemical bond between the coadsorbed NH3 and NO both in the mixed layer and in the isolated triangular units, pointing out the essential role of the surface mediation in inducing attractive dipole–dipole interactions and the presence of hydrogen bonds.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2744305
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact