Through a combined scanning tunneling microscopy (STM) and density functional theory (DFT) approach, we provide a full characterization of the different chemisorbed configurations of epitaxial graphene coexisting on the Ni(111) single crystal surface. Top-fcc, top-hcp, and top-bridge are found to be stable structures with comparable adsorption energy. By comparison of experiments and simulations, we solve an existing debate, unambiguously distinguishing these configurations in high-resolution STM images and characterizing the transitions between adjacent domains. Such transitions, described in detail through atomistic models, occur not only via sharp domain boundaries, with extended defects, but predominantly via smooth in-plane distortions of the carbon network, without disruption of the hexagonal rings, which are expected not to significantly affect electron transport.

Atomic Scale Identification of Coexisting Graphene Structures on Ni(111)

PATERA, LAERTE LUIGI;PERESSI, MARIA;COMELLI, GIOVANNI
2014

Abstract

Through a combined scanning tunneling microscopy (STM) and density functional theory (DFT) approach, we provide a full characterization of the different chemisorbed configurations of epitaxial graphene coexisting on the Ni(111) single crystal surface. Top-fcc, top-hcp, and top-bridge are found to be stable structures with comparable adsorption energy. By comparison of experiments and simulations, we solve an existing debate, unambiguously distinguishing these configurations in high-resolution STM images and characterizing the transitions between adjacent domains. Such transitions, described in detail through atomistic models, occur not only via sharp domain boundaries, with extended defects, but predominantly via smooth in-plane distortions of the carbon network, without disruption of the hexagonal rings, which are expected not to significantly affect electron transport.
http://pubs.acs.org/doi/abs/10.1021/jz402609d
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2744312
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 75
social impact