In spite of the introduction in therapy of highly effective biological agents, glucocorticoids (GCs) are still employed to induce remission in moderate to severe inflammatory bowel diseases (IBD), but considerable inter-individual differences in their efficacy and side effects have been reported. The effectiveness of these drugs is indeed very variable and side effects, particularly severe in pediatric patients, are common and often unpredictable: the understanding of the complex gene regulation mediated by GCs could shed light on the causes of this variability. In this context, microRNAs (miRNAs) represent a new and promising field of research. miRNAs are small non-coding RNA molecules that suppress gene expression at post-transcriptional level, and are fine-tuning regulators of diverse biological processes, including the development and function of the immune system, apoptosis, metabolism and inflammation. Emerging data have implicated the deregulated expression of certain miRNA networks in the pathogenesis of autoimmune and inflammatory diseases, such as IBD. There is a great interest in the identification of the role of miRNAs in the modulation of pharmacological response; however, the association between miRNA and GC response in patients with IBD has not yet been evaluated in a prospective clinical study. The identification of miRNAs differently expressed as a consequence of GC treatment in comparison to diagnosis, represents an important innovative approach that could be translated into clinical practice. In this review we highlight the altered regulation of proteins involved in GC molecular mechanism by miRNAs, and their potential role as molecular markers useful for predicting in advance GC response.

MicroRNAs as tools to predict glucocorticoid response in inflammatory bowel diseases.

DE IUDICIBUS, SARA;LUCAFO, MARIANNA;VENTURA, ALESSANDRO;DECORTI, GIULIANA
2013

Abstract

In spite of the introduction in therapy of highly effective biological agents, glucocorticoids (GCs) are still employed to induce remission in moderate to severe inflammatory bowel diseases (IBD), but considerable inter-individual differences in their efficacy and side effects have been reported. The effectiveness of these drugs is indeed very variable and side effects, particularly severe in pediatric patients, are common and often unpredictable: the understanding of the complex gene regulation mediated by GCs could shed light on the causes of this variability. In this context, microRNAs (miRNAs) represent a new and promising field of research. miRNAs are small non-coding RNA molecules that suppress gene expression at post-transcriptional level, and are fine-tuning regulators of diverse biological processes, including the development and function of the immune system, apoptosis, metabolism and inflammation. Emerging data have implicated the deregulated expression of certain miRNA networks in the pathogenesis of autoimmune and inflammatory diseases, such as IBD. There is a great interest in the identification of the role of miRNAs in the modulation of pharmacological response; however, the association between miRNA and GC response in patients with IBD has not yet been evaluated in a prospective clinical study. The identification of miRNAs differently expressed as a consequence of GC treatment in comparison to diagnosis, represents an important innovative approach that could be translated into clinical practice. In this review we highlight the altered regulation of proteins involved in GC molecular mechanism by miRNAs, and their potential role as molecular markers useful for predicting in advance GC response.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2747524
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact